Days of War, Captivity, and Faith

Inside—
A Conversation with President Mroz
Michigan Tech’s Honor Roll of Donors
A Conversation with President Mroz

On a sunny summer day, Michigan Tech President Glenn Mroz sat down in his fifth-floor office overlooking Houghton and the lift bridge and discussed Michigan Tech’s current state and future plans.

Q&A

Universities support society in a variety of ways. Given how fast our world is changing, what do you see as Tech’s vision and purpose?

Michigan Tech must maintain and enhance the quality of education at all levels. Tech graduates want credibility in the marketplace, and they want to know their education is relevant to helping solve the problems that lie ahead.

Programs like Enterprise really combine the students’ in-classroom learning with practical experiences that include research and development.

Our students will continue to apply the science and technology to help the world, but they will also manage, communicate, and understand science and technology’s social, economic, and ecological implications. We feel that students who have those skills are going to be highly valued in the marketplace.

Does Michigan Tech have to change to respond to the technological challenges that exist in society?

Tech is always changing. That is the agility of Michigan Tech. We were started to assist the mining industry, then mineral processing came in, then broader engineering and science programs. We continue adding new programs to meet the needs of the marketplace. And we’ll continue to change, strengthening current programs and judiciously starting new programs that can pass muster with our middle name.

So, how are we positioned to change?

The greatest need in any change is having the people who know where to go, are willing to go there, and have the ability to move the organization forward. The people at Michigan Tech are really the greatest strength for effecting change.

Recent surveys reveal that Tech people like it here, and students and alumni would like to be here.

There’s a big change happening, where a number of companies are coming to Houghton to establish themselves with offices closer to our talented faculty and students. GE and Ford are two, and there are more companies moving in.

Are you concerned that if Tech changes too much, we will lose the things that matter most to alumni—a great undergraduate education, strong University traditions, and a rich sense of community? How will these be preserved?

One of our greatest attributes has been to redefine undergraduate education in a technological world. When you look at the research universities, we really are not like them. But we have—maybe because of our size and location but surely because of our people—added practical R&D experience to undergraduate education.

The people who hire our students recognize that, and they have been coming to campus in record numbers over the past four years.

And there are good enrollment projections for the fall.

That’s the interesting thing about enrollment. When you talk to students, you wonder how much they know about your institution. And students are saying, “Well I’m coming here because of the Enterprise program.” Or, “I’ve already talked to a professor here.” Or, “I really want to get into the Applied Portfolio Management Program within a year.”

The students realize that these are opportunities that they just wouldn’t get at another university.

For this fall, tuition and fees increased $805, from $9,828 to $10,633. What are the plans to offset rising tuition costs?

Financial aid at the university has risen at a slightly faster rate than tuition, and we need to assure affordability and assure that we can attract good students. We need to keep going forward with philanthropic scholarships to help students out. It gets tiresome to hear that students pay a greater proportion of their education than I did, but it’s true.

What’s the biggest challenge as president?

I think one of the big challenges is to get everyone to understand what Tech is. Had I walked out the door in 1974 and not come back for a long period of time, I would know what Tech was in 1974, but it is a much different institution now.

Today, we are on a path to become a technological university for the world. That really is the aim. It’s educating people from around the world or from here and working with our industry partners who employ people all around the world. When our graduates leave Tech, they are talented people who can operate anywhere in the world.

What’s the hardest decision you’ve had to make?

When I first came in, there were substantial budget cuts, and those effected not only the institution but also a lot of people’s lives. Those were never made easily, but, at the end of the day, you knew that the institution that has been around for one hundred years needs to be around for another one hundred years or more. I needed to make those tough decisions for the current students and the future students.

What advice would you give to students who say that one day they would like to be the president of Michigan Tech?

Go for it. It’s a great job. A lot of what I do has to do with keeping a consistent message, keeping everyone on track, helping people understand in practical terms what
“Failing is not bad. Not trying is really bad.”

Michigan Tech is all about. Where it is going. What are the things about Michigan Tech that line up and what things need to change. And what things will never change, like the culture of Michigan Tech that encourages people to try new things, to not be afraid of failure. Failing is not bad. Not trying is really bad.

For alumni, if you could recommend one book to them, what would it be and why?
I guess it would be Good to Great by Jim Collins. It’s built on some principles that have really helped me and the executive team. Make sure you pay attention to what you are good at. Make sure you pay attention to what drives the economic engine of the organization. You have to think about what you really have a passion for.

One of the principles that was key early on [and in Good to Great] was the Stockdale principle: “You must never confuse faith that you will prevail in the end—which you can never afford to lose—with the discipline to confront the most brutal facts of your current reality, whatever they might be.” That may be a little negative, but it’s real.

What are some issues that alumni don’t usually read about that will be addressed on campus this fall?
There’s the new construction. They are going to redo US 41 for safety issues [near McNair and Widowsworth Halls]. We are looking at a new residence hall, with apartments, behind McNair.
And the Michigan Tech Enterprise SmartZone, with its business incubators, business development programs, and student programs, is something we don’t really talk about too much. There are about thirteen companies, and they are running out of space. We are buying the UPPCO building [in part] to provide business incubator space.

How can alumni and friends get involved to support Tech?
There are so many ways now: keeping informed about campus; serving on an advisory board; and one critical thing is increasing our fund-raising, both on campus and with our alumni and friends.

Can you explain the importance of growing the endowment?
If you look at the state appropriation over forty years, it’s essentially the same as it was in the late 1960s and early 1970s in CPI [consumer price index]-adjusted dollars. The state has been a great partner, but at the same time, the level of sophistication in education has increased. You can just pop the hood on your car, take a look, and think back to 1970 with a slant six and no air conditioning.

Education has gotten similarly complicated, and the student who is in the Senior Design and Enterprise programs are so good. And what supports that effort are the outside dollars, especially the endowment. It supports programs that encourage students to follow their dreams. We can attract the students who have the ability to do that and those who may not have the natural talent for it but can develop it. A lot of schools do a program like Enterprise but not on the scale that we do it.

Enterprise projects are really like the students’ first jobs.
What makes Silicon Valley entrepreneurs successful is that they learn how to fail fast. In other words, they can start on something, and, if it’s going nowhere, they know when to shift gears and try something new. I think the only way you can learn how to do that is by doing it. And that is why the Senior Design and Enterprise programs are so good. The students get an opportunity to do that when their job doesn’t depend on it.

Again, the endowment supports programs like these. Universities that have endowments will excel, and universities that don’t will not.

Michigan Tech has received some remarkable gifts in recent times. What is their impact?
We had a group of students working at a hospital with a university in Africa because of the generosity of Frank Pavlis and his Institute for Global Technological Leadership. And the entire Enterprise program would not exist without donors.

We’ve got the largest Peace Corps Master’s International Program in the world, and recently, Pat Nelson [wife of Charles ’36, inventor of the paintball] and the John ’51 and Elizabeth Widenhoefer Trust have supported it in a very substantial manner.

Dick ’56 and Bonnie Robbins have supported three chairs in sustainability, and they were really spot on to what our advisory groups were encouraging us to do. The hiring of those three endowed positions will really be a catalyst to hire more people in a number of departments across campus. It will strengthen programs that we are already good at and have a passion for.

What is your hope for Michigan Tech’s future?
I would love to see Michigan Tech and the people at Michigan Tech get the recognition they deserve. The words “best kept secret” should be banished from the lexicon!
On our 150th anniversary in 2035, I would love to see a world-class faculty with 40 percent endowed positions; see us recognized as one of the best universities in the world for what we do; see us recognized as a catalyst for education, research, and development at all levels; and be a place where people come to seek out new ideas with a fresh outlook.™
Days of War, Captivity, and Faith

By John Gagnon

James Cooper—World War II navigator, POW, and survivor. Just don’t call him “hero.”

During World War II, James Cooper ’39 cheated death. In a bomber over the flak-laden skies above Germany, his plane was hit by anti-aircraft fire. The bomber and its crew of ten had to crash-land in a field in Holland.

“The day we went down, the group lost two planes. There were no survivors of the other plane. Everyone in our crew survived.”

Lucky?

“Yes, yes,” he says, even though he ended up a prisoner of war for ten months—a time of tension, boredom, loneliness, and misery.

Cooper graduated from Michigan Tech with a bachelor’s degree in metallurgical engineering. He went to work in Arizona, then enlisted in the Army Air Force (a precursor to the Air Force), where he was a navigator on a B-24 bomber, called a Liberator. Cooper was in the 448th Bombardment Group that, between December 1943 and April 1945, flew 262 missions and lost 460 men.

Liberators, which carried a large payload and had a long range, were described as “flying boxcars” because they were more square than sleek. Like many bombers, they were dolled up with paintings of women, pictured expansively female, on the fuselage. One of the planes Cooper flew in was named Daisy Mae, from the Lil’ Abner cartoons. “We flew Daisy Mae several times and once came back with severe damage. The crew chief was upset that she had lost a finger, and he painted a purple heart on her blouse.”

After training stateside, Cooper arrived in England in April 1944. He was stationed at Seething Air Field, near Norwich, 114 miles northeast of London.

The British had a saying for American military men. “They’re overpaid, oversexed, and over here,” Cooper says. “We had the answer to that. We’re underpaid, undersexed, and under Eisenhower.” Actually, he says, the Brits treated the Americans well.

Before climbing aboard, he and his crew huddled like a football team and grasped hands. “I usually got on the plane last. Maybe that was superstitious.”

Typically, they took off thirty seconds apart in groups of up to thirty-six planes, wing tip to wing tip. “That was not without danger,” Cooper says. Clouds and contrails sometimes limited visibility. “Every week there were one or two collisions.” Each group formed on a gaudily painted, easily seen plane. His was yellow-and-black checkerboard and named You Can’t Miss It—which is what the British used to say when giving directions.

On their runs into Germany, they typically took off at six o’clock and returned around two o’clock. They climbed to 28,000 feet on the way there, where the temperature was fifty below zero. They had boots and clothes laced with wires that plugged into the electrical system for heat. Cooper had two pairs of gloves: heavy for warmth, nylon for manipulating equipment. They did nothing barehanded. “At that cold,” he says, “you stick to anything you touched.”

The crew of ten consisted of pilot, copilot, navigator, bombardier, flight engineer, radio operator, and four gunners. “We were a team. Everybody had a specialty, and we depended on one another.” Each man was cross-trained for at least two jobs. Cooper was trained for navigator, gunner, and bombardier.

The missions into Germany were routinely 800 miles or more. (Berlin is about 570 miles from London.) Going in, they flew at 200 miles an hour with a stiff tail wind. They had oxygen for use above 10,000 feet and carried 4,000 pounds of bombs. They had radar that the Germans routinely jammed with electronic noise. They always had secondary targets, but bad weather or mechanical failure aborted some flights. Sometimes, smoke from other planes, called Pathfinders, which had Americans well ahead of the group, would confuse the bomber. Cooper often had to fly at lower altitudes, where there was less headwind and fuel consumption. After these missions, they were debriefed and then went to the officers’ club for dinner, drinks, and relaxation.

The Fateful Flight

On June 29, 1944, they bombed an engine plant in Bernburg, in central Germany. On the way back, the lead plane got confused. Cooper knew they were off course but couldn’t do anything about it. “We couldn’t leave the formation. That was a triumph of military discipline over common sense.”

They ended up flying over heavily defended Magdeburg three times. The first time around, he surmises the Germans “were having a cup of tea.” The second time—they were taking aim. The third time—they were waiting for us.” Antiaircraft fire cut a fuel line. “We ran out of gas,” Cooper says. They jettisoned heavy equipment—including two machine guns and the radio—to lighten the load and stretch the fuel. They made it to the coast and realized they wouldn’t make it across the English Channel, so they turned around and crash-landed outside of a little town called Beemster, Holland.

On the way down, the pilot, copilot, and flight engineer stayed at their positions. The others went to the rear of the plane and sat down—feet braced, hands behind the neck, elbows on knees. Cooper prayed. “I put myself in the Lord’s hands. Whatever the decision was, I knew there was no appeal. I’d make it or not. I accepted that.”

In Holland, they landed safely. “You hit once, and you bounced pretty hard. You hit the second time, you were sliding.” The nose wheel failed, then the other two wheels went, and one engine broke loose. “That slowed us, and we stopped before a drainage ditch at the end of the field.” He had a few cuts on his legs but otherwise was fine. He got out and used a flare gun to try to set the plane on fire. There wasn’t enough gas left for that to work. He looked
Going Home

“We stepped more lively then.” There was a short battle with a German combat unit that was stationed next to the camp. Shots were going overhead. Cooper says, “We were sitting there playing cards. There wasn’t anything else to do.” American soldiers prevailed in an hour. In Moosberg, “they took down a Nazi flag on city hall and raised up an American flag. There was a lot of cheering and a few tears—from everybody in camp. The French, too.”

Soon they were trucked to France, where there were four embarkation points for America, all named for cigarettes: Camel, Lucky Strike, Old Gold, Chesterfield. He sailed on a troop ship from France to the Caribbean and then on to New York. The trip took ten days, and he entered New York Harbor on June 7, one year and one day after D-Day. “We passed the Statue of Liberty. Everybody ran to that side of the ship.”

He had sent word to his family, via the Red Cross, that he was liberated. His wife, who had their baby in the meantime, never got the message. “I called her from New York. She wasn’t sure I was alive, though she was informed that I was believed to be a POW. I didn’t talk to her too long—a lot of people were waiting to use the phone. But all of a sudden, she was very happy.”

He got a uniform, partial pay, and some leave. He arranged for his dad to reserve a cabin for two months at Twin Lakes, thirty miles southwest of his native Houghton. He had dropped from 155 to 115 pounds. "A little swimming, a lot of rowing, and I got back into good shape. Good meals and Bosch beer will do that.”

He went on to a career in the mines of Mexico. He stayed involved in an organization called the American Ex-Prisoners of War, served as national commander, and met President George W. Bush.

He returned to Holland in 1995 for the fiftieth anniversary of that nation’s Independence Day, May 5, which marked the country’s liberation from Germany. He met the girl who had been working in the field when he crash-landed. “We said hello,” he says. He also visited the prison camps.

The whole experience took a toll on him. Now age ninety-two, he says, “I’m not very patient. I don’t like loud noises or crowds.” He says crying babies disturb him. “And you have nightmares.”

“I can’t complain. No pain.”

Okay, we’re done.
A PHD at Twenty-One, the World at Twenty-Five?

Katerina Aifantis ’01 is accustomed to being the youngest in the room. At the age of sixteen, the Houghton High School student sweet-talked her principal into letting her take courses at Michigan Tech, where she promptly aced calculus and chemistry. “She just beat everyone in the class,” remembers Associate Professor Paul Charlesworth. “She’s one of the finest students to ever take my general chemistry course.” By Marcia Goodrich

The next year, Aifantis went hat in hand to Stephen Hackney, a professor of materials science and engineering, and asked to work with him on his applied elasticity research. He hesitated, Hackney says, until “it became clear that her math skills far exceeded those of many graduate students.”

Thus it came to pass that, at an age when many teens would be obsessed with prom dresses or hockey, Aifantis was hip-deep in the micromechanics of lithium-ion batteries. Wearing a black skirt and sweater purchased for the ceremony, she walked down the center aisle of a fourteenth-century stone edifice, flanked by two lantern bearers and led by a page who presented her thesis to twelve black-robed professors.

“I was planning on going to my defense in jeans, not knowing how formal the ceremony is,” she confesses. “When I found out, I worried more about what I was going to wear than what I was going to say.”

Her self-assurance was well founded. The twenty-one-year-old Aifantis walked away from her defense the youngest person ever to earn a PhD in the Netherlands.

Cool. Now what?

She yearned to do college research, but nowhere is there a big market for twenty-one-year-old professors. So Aifantis knocked around labs in Greece, the UK, France, and Russia before she threw her hat in the ring for that European Research Council grant.

Calculating the odds of winning and concluding “What are the chances?” she accepted a postdoctoral fellowship in applied physics at Harvard and settled down to research nanoelectronic systems. Then early this year, her ship came in: Aifantis got her grant. In April, she returned to Greece to begin her research.

Harvard has been fine, really, Aifantis says, “but now the happy part begins.”

With her 1.1-million euros (about $1.8-million), she will explore the interfaces between different materials, including bone and metal, which has major applications in orthopedic surgery. Aifantis will also continue work she began with Hackney on the design of lithium ion batteries, with the aim of someday implanting them in the brains of Parkinson’s patients “to make their lives easier.”

“I worked so hard at Cambridge that I practically had my thesis done in a year,” she says. However, Cambridge required she spend a minimum of three years earning a doctorate, and no amount of the cajoling that had worked so well in America could bend that rule.

This time, faced with Cambridge’s requirement, she says, “but now the happy part begins.”

She aims to implant batteries in the brains of Parkinson’s patients “to make their lives easier.”

With her 1.1-million euros (about $1.8-million), she will explore the interfaces between different materials, including bone and metal, which has major applications in orthopedic surgery. Aifantis will also continue work she began with Hackney on the design of lithium ion batteries, with the aim of someday implanting them in the brains of Parkinson’s patients “to make their lives easier.” She can’t wait.

So much to learn, so little time. At least she’s getting an early start.

Katerina Aifantis is shown at her PhD thesis defense with her advisors, left: Professor Jeff De Hosson from the University of Groningen (The Netherlands) and right: Professor John Willis from the University of Cambridge (United Kingdom).
HELPING TROUBLED STUDENTS

By Jennifer Donovan and Kara Sobol

He sits alone in class every day, lost in his own world, not really connecting to people around him. A recent writing assignment contained graphically detailed scenarios of violence, but he says it’s nothing more than harmless fiction…

She’s the leader of a high-profile student organization, devoting long days to her studies and working on extracurricular activities. Previously friendly and outgoing, lately she seems scattered and an emotional roller coaster. Her friends complain that she’s drifting away from them…

With incidences of school violence on the rise, the challenges of dealing with anxious, depressed, or stressed-out students are receiving priority attention on campuses. Tragedies like the Virginia Tech massacre have prompted universities to look inward, assessing their own students as they scrutinize their crisis and emergency intervention plans.

The question arises on the nation’s campuses—do today’s students wrestle with more psychological problems than previous generations did, and, if so, what can be done to prevent them from escalating into tragedies?

Recent data indicates that student mental health issues are indeed on the rise. In a 2007 survey of counseling center directors sponsored by the American College Counseling Association, 91.5 percent reported a “recent trend toward greater numbers of students [nearly 50 percent] with psychological problems.”

A growing number of colleges and universities are responding by expanding counseling services, including extended hours and additional counselors. Even so, the average ratio of counselors to students is 1:1,969. At Michigan Tech, the ratio is only slightly better, at 1:5,500. With tight budgets and overstretched staff, counseling departments are finding themselves ill-equipped to handle the demand.

Although Reader’s Digest recently recognized Michigan Tech as the third-safest campus in the nation, the magazine’s evaluation focused on external security threats such as crime or fire. The internal threats—the ticking time bombs of disturbed students—are much harder to assess or prevent.

Comparing Notes

Michigan Tech’s solution is an innovative—and practical—one. Last year, the Division of Student Affairs assembled the Early Intervention Team (EIT), a cross-campus committee to assess troubled students on a case-by-case basis.

Dean of Students Gloria Melton calls the creation of EIT a vital step. “Often these students are on the radar screens of more than one person or department for either behavioral or health-related issues,” says Melton. “But if we don’t talk with each other about our concerns, we may not recognize it when a student’s life is spinning out of control.”

EIT is quietly yet boldly addressing this communication issue. During weekly meetings, the group identifies students of concern and works to determine appropriate assistance for them. Faculty and staff are encouraged to share their concerns with the group, and they are doing so in increasing numbers.

Don Williams, director of counseling and wellness services and a member of the EIT, believes that the variety of team members is the key to helping students who might otherwise not have sought and received help.

“We’re assessing students and providing personalized assistance, which is often broader than just counseling,” Williams says. “For example, we’ve discussed child care services for single-parent students and health care for international student families. It’s not just psychologically troubled students.”

Campuses across the nation are recognizing the need for cross-departmental solutions like Tech’s EIT. Last year’s survey of counseling directors included a question never asked before: “At what point does intervention become intrusion?” This issue is alarmed by a piece of writing.”

“Tragedies can happen anywhere, but we’re being proactive and doing our absolute best to create a safe campus environment,” Williams says. “When you have a tight-knit community like ours, where faculty and staff members are involved and make it a point to know their students, early intervention isn’t such a difficult task.”

Williams believes that Michigan Tech is doing the right thing by involving the entire campus community.

“Our counselors are skilled in dealing with these sorts of issues, of course, but we can only do so much,” he explains. “But when you combine eyes from a variety of departments, you have a much broader view. ‘It takes a village,’ as they say—and we’re all in this together.”

“Helping or Intruding?

Yet these very precautionary measures raise another question: “At what point does intervention become intrusion?” This issue made headlines recently when a Virginia student in a creative writing class penned a fictional account of a student’s violent breakdown. His dorm room and car were subsequently searched, and, after discovering three guns, he was expelled. Later, however, psychiatrists determined that the student posed no threat to himself or others, and he maintains that his story was a simple fictionalized probe into the topic of student violence.

As administrators tackle the legally and ethically murky process of finding new ways to prevent violence, such concerns are bound to arise. Tech’s EIT carefully considers each student’s case behind closed doors before deciding on a course of action, and if they decide that intervention is required, they share details sparingly and only with essential people.

The privacy issue looms ever larger as more and more students require counseling services. Williams says it’s essential for them to be able to find assistance when they seek it—and not be afraid to do so.

“Our society has become more knowledgeable about health issues and prescription medications, which has led to more people seeking treatment for their conditions—and that’s great,” says Williams. “But when you have increased numbers of students taking medications, you also have increased numbers of students forgetting to refill prescriptions and abruptly stopping medications. We would never want a student who feels unstable or suicidal to not seek us out.”

There is a fine line between safety and privacy, Williams admits, but it isn’t preventing Michigan Tech from trying to identify problems before they get out of hand and providing safe and discreet solutions.

“Tragedies can happen anywhere, but we’re being proactive and doing our absolute best to create a safe campus environment,” Williams says. “When you have a tight-knit community like ours, where faculty and staff members are involved and make it a point to know their students, early intervention isn’t such a difficult task.”

Williams believes that Michigan Tech is doing the right thing by involving the entire campus community.

“Our counselors are skilled in dealing with these sorts of issues, of course, but we can only do so much,” he explains. “But when you combine eyes from a variety of departments, you have a much broader view. ‘It takes a village,’ as they say—and we’re all in this together.”

Michigan Technological University www.mtu.edu
Ultimately, Sweitz’s inquiry will constitute a marriage of oral, archival, and archaeological histories—from recollections to maps to pottery. In an even broader scheme, Sweitz’s work might affect the future spread and impact of capitalism.

“We’re trying to understand processes—global markets and commodity exchanges—that are still happening today in the third world,” he says. “Industry is going there, capital is going there, and it’s changing local culture there.”

In this respect, Sweitz says, the past could inform the future, that is, ameliorate the hardships and enhance the benefits of industry and capitalism.

“We hope to better the lives of the people we work with,” he says. “There needs to be some outreach. By doing studies like this, we’re understanding the evolution of not only the sugar industry but the community itself and the people in it. Aguirre is a postindustrial community. The mill is shut down. Jobs are leaving. The economy is depressed. The community is starting to deteriorate. These people are in a tough position and they are left to wonder, ‘What are we going to do with this mill that’s derelict?’ ‘How are we going to preserve our community?’ ‘What do we do next?’

In turn, Sweitz asks, “How do we answer these poignant questions? How do we help them keep their part but move on in a new direction? How can we incorporate the past with the future? How can we help this community move on in a postindustrial world?”

So, why does he care about a small island country and the sweet and bitter fruits of its industry?

“Because,” Sweitz avows, “this is the story of humanity.” He has high hopes for his labors. He wants to establish a cooperative agreement with the University of Puerto Rico to collaborate on this work, exchange students and scholars, organize a field school to train American and Puerto Rican students and have them enroll in Tech’s master’s in industrial archaeology, and establish a dual degree offered by both institutions.

In pinpointing these cultural changes, Sweitz bases his inquiry on the presumption that ordinary people matter. “One of the primary missions of historical archaeology,” he says, “is to talk about the lives of everyday people.”

A native of Yakima, Washington, Sweitz earned a bachelor’s degree in archaeology and history at Boston University; he skipped the master’s and earned a PhD in anthropology from Texas A&M; and he came to Tech’s industrial archaeology program in fall 2005. Since, he has visited Puerto Rico six times.

That country’s sugar economy was “pervasive,” Sweitz says, and the material culture, which is the warp and weft of archaeology, reflects the industry’s impact on the country. One example: Overseers had fine houses, mill workers had decent houses (rock and mortar), and field workers had simple houses (sticks and mud).

The sugar industry in Puerto Rico was based on what Sweitz calls a central, an expansive array of a mill, a company store, and a company town characterized by both paternalism and parasitism, and segregated, “to some degree,” on the basis of race, ethnicity, and occupation.

In describing the central, Sweitz is the detached scientist. “My place is not to judge,” he says, “but to find out what happened in the past and what changes resulted.”

The central was the product of an infusion of capital by American investors after the US gained possession of Puerto Rico in 1898 following the Spanish American War. Sweitz is working at Central Aguirre—the lone surviving example of a central in Puerto Rico. Located on the south-central coast, it was built around 1900, reached its peak in the 1950s, and shut down in 1990.
SHORT’S STORY
By Wes Frahm

Sometimes what you see is what you get. Sometimes the person behind the smile can live up to the hype. Such is the case with Michigan Tech quarterback Steve Short. He is a special athlete—recruited in both football and basketball out of high school. He is a team leader—one of only a handful of Tech players named captain as a sophomore. He is a good student—one who has earned a 3.21 cumulative grade point average in exercise science.

It seems that Short has always exhibited those characteristics. He recalls being the leader and quarterback in grade school pickup games. “At recess I was always the quarterback,” he says. “I guess I was lucky I could throw a little bit and run around and make plays.”

Short credits much of his development on the football field to his father, Dan, a teacher and coach at Kingsford High School. “He would run routes for me to throw to him. It helped that he had keys to the gym, too.”

The 6-0, 190-pound Short turned into a two-sport star for the Flivvers. He was named the Upper Peninsula Player of the Year in basketball as a senior and at one point was contacted by Tech men’s basketball coach Kevin Luke about playing hoops for the Huskies. He had his sights set on the gridiron, though.

Short played both offense and defense as a prep, leading Kingsford to the state quarterfinals in 2004. Tech football coach Tom Kearly persuaded Short to continue his career in Houghton.

“Coach Kearly made me feel really welcome and wanted,” says Short. “I knew it was going to be a good fit both on the field and with academics.”

Short sat out the 2005 season as a redshirt and saw some playing time early during his freshman season in 2006. By the fifth game of the year, he had worked his way into the starting role. The quarterback led the Huskies to a 14-12 Homecoming victory over Hillsdale in his debut and helped Tech red off six straight wins to close out the season.

The undefeated streak ended with last year’s season opener, but it wasn’t without a record-setting performance from Short. He broke Tech single-game records for passing yards (431), total offense yards (504) and passing touchdowns (six).

Short is now 12-5 as a starting quarterback with the fifth-most passing yards in school history. He has two years to go, with a lot of expectations.

“Steve has a chance to be a special player in our league,” says Kearly. “He’s a great leader.”

Flavours. He was named the Upper Peninsula Player of the Year in basketball as a senior and at one point was contacted by Tech men’s basketball coach Kevin Luke about playing hoops for the Huskies. He had his sights set on the gridiron, though.

Short played both offense and defense as a prep, leading Kingsford to the state quarterfinals in 2004. Tech football coach Tom Kearly persuaded Short to continue his career in Houghton.

“Coach Kearly made me feel really welcome and wanted,” says Short. “I knew it was going to be a good fit both on the field and with academics.”

Short sat out the 2005 season as a redshirt and saw some playing time early during his freshman season in 2006. By the fifth game of the year, he had worked his way into the starting role. The quarterback led the Huskies to a 14-12 Homecoming victory over Hillsdale in his debut and helped Tech red off six straight wins to close out the season.

The undefeated streak ended with last year’s season opener, but it wasn’t without a record-setting performance from Short. He broke Tech single-game records for passing yards (431), total offense yards (504) and passing touchdowns (six).

Short is now 12-5 as a starting quarterback with the fifth-most passing yards in school history. He has two years to go, with a lot of expectations.

“Steve has a chance to be a special player in our league,” says Kearly. “He’s a great leader.”

The future looks bright for Short and the Huskies. Tech’s offense returns mainly intact with Short at the helm.

“I feel like we have a really talented group of guys,” says Short. “A lot of them have been in town all summer working out, and we’re all like brothers. We do everything together.”

Sherman Field now features ProGrass artificial turf, allowing the field to be used much more—from football practices and games to intramurals, club sports, and student groups. It is likely no one will benefit more from the new turf than Tech starting quarterback Steve Short, who models his game after Brett Favre. “I don’t always have the most conventional style,” says Short. “But as long as we get in the end zone, that’s all that matters. I’m really excited about the new turf. I think it will really benefit the offense because we’ll be able to practice on our game field, where we couldn’t do that before.” The first football game on the new turf was August 30 against Winona State.
The tradition of hands-on, experiential learning remains an essential element in the Michigan Tech educational experience and the University’s strategic plan. Here, students’ solutions for local problems may have much broader implications.

Huron Creek runs from Portage Township through Houghton to the Keweenaw Waterway. It also runs from the copper mining days through the strip malls and Wal-Mart of today, and it’s not doing well.

“We wanted to preserve it before we lost it completely,” says Professor Alex Mayer. Beyond saving the creek, “It is also about managing a watershed, wetlands, storm flows, erosion, etc.,” says Associate Professor Hugh Gorman. “Every watershed should have a management plan, however simple.”

Huron Creek’s troubles began when it was a water source for the Huron copper mine. Next, the city of Houghton grew around it, including a landfill and the M-26 commercial district. Today, challenges persist with heavy construction and possible septic problems. Local schoolteachers have even used it as a lesson in pollution.

Enter Mayer, professor of geological and environmental engineering, and Gorman, associate professor of environmental policy and history. They believe progress on saving Huron Creek has resulted from early involvement of the local community in addition to Tech faculty and staff.

“An initial public meeting on rerouting the stream due to Wal-Mart construction was packed,” Gorman says. “That showed us the interest was there, and it eventually encouraged the involvement of students, faculty, and community members.”

Adds Mayer, “We learned as much from the community as they learned from us.”

Since that first meeting, Gorman’s graduate students and Mayer’s senior design students have helped with many different facets of the project. In fact, environmental engineering master’s student Linda Kersten ’02 has written the overall watershed management plan, which doubles as her thesis. Mayer and Gorman agree that the success of the project has hinged on working across multiple Tech departments.

“You need some technical expertise, but it is more of an iterative process that involves many people,” says Mayer. That teamwork resulted in state funding for Kersten’s watershed management plan, successfully competing against many groups across Michigan.

Kersten has enjoyed the process “because it presented a chance to help out the local community,” she says. “Everyone says ‘Think global, act local.’ Well, that’s what I got to do. This plan is designed to produce results, and who doesn’t like that?”

Community interest in the creek is partly due to where the creek ends: Houghton’s waterfront park. “You should have a nice-looking stream there,” Mayer says of the common sentiment of the citizens using the park. Currently, the stream “isn’t pristine,” in Mayer’s understated words.

Community members, working with the students, identified the following goals and priorities: creating a storm-water plan, moving away from septic systems, and improving vegetation and access.

What’s next?

Go to the Michigan Department of Environmental Quality and other sources of funding with a plan to implement these projects, Gorman says. After one more round of public input on the plan and submission to DEQ for approval, the researchers will pursue, with the city of Houghton, funding under DEQ and other state and federal programs.

The future of Huron Creek will continue to include Tech students and faculty working with community members.

“The students will continue monitoring the vegetation and water,” says Mayer, “and the water quality should improve. We can do this working with existing classes at Tech.”

Working Together, Saving Huron Creek
By Dennis Waldhainen ’92

Students and community groups have also embraced projects such as trash cleanup.

Saving Huron Creek combines Michigan Tech expertise and hard work with community concern and involvement: a new dimension of “town and gown.”
IT Oxygen Breathes Life into Projects
by Dennis Waldakainen ’92

The Village of Lake Linden had problems: It was using ancient software for its water- and sewer-bill- ing, and it had an accounting system with flaws revealed when an employee was charged with embezzlement. Send in the students.

Michigan Tech’s IT Oxygen Enterprise team created a new accounting system and developed a mechanism for checks and balances. They did it with little cost to the village. (Enterprise teams are student-run businesses supported by clients whose problems they solve.)

The system features an audit trail and streamlines the process of updating customer accounts. Previously, staff had to input 550 entries one at a time every month. Now, they can be batched, and what once ate up three days takes about an hour. The process should go even faster with a bar-code system allowing clerks to process checks and balances. And they learned how to develop and apply a methodology and how to handle changing requirements.

The Lake Linden folks are pleased. “The students have learned something about bright students and modern technologies. And these types of projects what they are studying in the classroom,” says Maatta. “The students learned how to develop and apply a methodology and how to handle changing requirements.”

“It’s a great combination of students, too,” adds Frendewey. Computer science, computer engineering, business, and computer network and system administration majors are part of the thirty-third-member team, which enjoys one big advantage over other enterprise groups.

“The get paid,” Maatta says. “We wanted to run it as an actual business, so we pay the students, who typically work on projects ten hours per week.” Thanks to a five-year, $1.2-million grant from the Herbert H. and Grace A. Dow Foundation, the enterprise can run as a company and take on more business. The team has current projects for the Boy Scouts of America and the Nature Conservancy. Also, a grant from IBM has allowed the team to use business modeling to analyze some of Tech’s own administrative processes. John Sooying 76, vice president of solutions and software for IBM, was instrumental in the grant.

“It’s many Tech offices working together,” Frendewey says. “The students had to present their findings and did a great job.”

Maatta became advisor of the IT Oxygen Enterprise after he retired from IBM and joined the SBE faculty.

“It’s always great when you see students step up into leadership positions,” Maatta says. “You can see their confidence grow over time, and you never know who is going to be a leader.”

The faculty and students don’t want the enterprise to get too big, according to Maatta, but “we would love to see a student spin off his or her own business from this and become an entrepreneur.”

Dam(s) Lucky
by Marcia Goodrich

Faced with more state-mandated spending than it had in its bank account, Stanton Township never expected that a group of Michigan Tech students would ride into town and save the day. But they did anyway.

It seemed like a heck of a deal. For one dollar, the township got a pair of historic dams, a reservoir, and a stretch of one of the Keweenaw’s great steelhead streams. For a township looking to boost recreation, it was hard to turn down such an opportunity. A few years later, however, the Stanton Township Board felt that their gift horse was probably Trojan.

“I don’t think the board knew what the potential liability was,” says former Town- ship Supervisor Marvin Heinonen.

Houghton County’s Salmon Trout River is slowed in its rush toward Lake Superior first by an 1894 timber crib dam and then by a much larger 1901 steel dam. In 2003, the Michigan Department of Environmental Quality, concerned that the dams might fail and flood the coastal village of Redridge, ordered the township to meet the state’s deadline.

Based on its findings, the township removed the top section of the timber crib dam in 2004 to drop the water to a safer level. The total price tag: about $100,000.

“We wanted to run it as an actual business, so we pay the students, who typically work on projects ten hours per week.” Thanks to a five-year, $1.2-million grant from the Herbert H. and Grace A. Dow Foundation, the enterprise can run as a company and take on more business. The team has current projects for the Boy Scouts of America and the Nature Conservancy. Also, a grant from IBM has allowed the team to use business modeling to analyze some of Tech’s own administrative processes. John Sooying 76, vice president of solutions and software for IBM, was instrumental in the grant.

“It’s many Tech offices working together,” Frendewey says. “The students had to present their findings and did a great job.”

Maatta became advisor of the IT Oxygen Enterprise after he retired from IBM and joined the SBE faculty.

“It’s always great when you see students step up into leadership positions,” Maatta says. “You can see their confidence grow over time, and you never know who is going to be a leader.”

The faculty and students don’t want the enterprise to get too big, according to Maatta, but “we would love to see a student spin off his or her own business from this and become an entrepreneur.”

We’re just delighted,” says Heinonen. “We’ve received over $100,000 worth of work on this project from Tech. They did everything from soup to nuts. We’re just delighted.”

“We’re extremely elated out here in Stanton,” he says. “And I’ve told other communities, if you get a chance to use those smart students over there at Tech, feel free to ask.”

“I love going out there,” he says. “It was a great job to work on something that had a direct bearing on the UP.”

“IT Oxygen Breathes Life into Projects” by Dennis Waldakainen ’92

IT Oxygen students left, top: Brandon Karis, and bottom, Daniel Volans. SBE faculty members right, top: Bob Maatta; and bottom, Jim Frendewey. Enk started his career with Sentry Insurance in Wisconsin, and the experi- ence with this project has piqued his interest in management as well as the nuts and bolts of writing code.

Overseeing the project are Bob Maatta ’68 and Jim Frendewey ’73 of the School of Business and Economics. They are working closely with Village of Lake Linden Councilman Ed Fisher and Village Clerk Bob Poiter. “This really complements what they are studying in the classroom,” says Maatta. “The students learned how to develop and apply a methodology and how to handle changing requirements.”

The Lake Linden folks are pleased. “The students have learned something about local government,” says Fisher, “and our council and office staff have learned something about bright students and modern technologies. And these types of projects what they are studying in the classroom,” says Maatta. “The students learned how to develop and apply a methodology and how to handle changing requirements.”

“IT Oxygen Breathes Life into Projects” by Dennis Waldakainen ’92

IT Oxygen students left, top: Brandon Karis, and bottom, Daniel Volans. SBE faculty members right, top: Bob Maatta; and bottom, Jim Frendewey. Enk started his career with Sentry Insurance in Wisconsin, and the experience with this project has piqued his interest in management as well as the nuts and bolts of writing code.

Overseeing the project are Bob Maatta ’68 and Jim Frendewey ’73 of the School of Business and Economics. They are working closely with Village of Lake Linden Councilman Ed Fisher and Village Clerk Bob Poiter. “This really complements what they are studying in the classroom,” says Maatta. “The students learned how to develop and apply a methodology and how to handle changing requirements.”

The Lake Linden folks are pleased. “The students have learned something about local government,” says Fisher, “and our council and office staff have learned something about bright students and modern technologies. And these types of projects what they are studying in the classroom,” says Maatta. “The students learned how to develop and apply a methodology and how to handle changing requirements.”

“The Lake Linden folks are pleased. “The students have learned something about local government,” says Fisher, “and our council and office staff have learned something about bright students and modern technologies. And these types of projects what they are studying in the classroom,” says Maatta. “The students learned how to develop and apply a methodology and how to handle changing requirements.”
Alumni Association Notes

Mission Statement
The mission of the Michigan Tech Alumni Association is to provide a mutually beneficial link between Michigan Tech alumni and a) the University, b) other alumni, and c) Michigan Tech students (future alumni).

Vision
To possess an environment and spirit in the Michigan Tech Alumni Association that results in a significant number of alumni forming lifelong relationships with the University and other alumni.

New Board Members Named
Mark Garver ’06 is a project administrator with PB Americas on the construction management team for the O’Hare Airport modernization project. He also manages all accounts payable and expenses, commanages the vehicle fleet, and monitors all direct expenses. At Tech, Garver was active with Sigma Tau Gamma fraternity, Interfraternity Council, FIRST Robotics, Sailing Club, Undergraduate Student Government, and Memorial Union Board, among other organizations. Garver also interned at Troy Design and General Motors, and he received his BS in Business Administration.

A colleague says of Garver, “We are gaining both a motivated and organizationally skilled individual on the Alumni Association Board.”

Daniel S. Batten ’88/’90 is regional IT applications manager—Americas, for Textron, Inc. Previously, he was global program manager with GMAC Financial Services, leading teams in manufacturing and financial services. Prior to working for GMAC, Batten was a global senior manager for Delphi Corporation, involved in supply chain, financial, and human resource services. While at Delphi, Batten was honored with the Excellence in Achievement Award. Batten’s community service includes leading a $50-million fund-raising drive for his church and volunteering for Junior Achievement and the Boy Scouts of America. Batten received his AAS in Mechanical Design Engineering Technology and his BS in Business Administration.

He recently received his MBA through Northwood University and says, “I’ll enjoy the opportunity to give back to Michigan Tech.”

Edwin Eiswerth ’77 is the fire chief for Peachtree City Fire and Rescue. Eiswerth leads the operations of the department’s emergency services and is responsible for budgeting, hiring, developing, and training staff. Prior to working in emergency services, Eiswerth was in the US Air Force and retired with the rank of lieutenant colonel. Eiswerth has been active with the International Association of Fire Chiefs, Metro Atlanta Chiefs Association, and Fayette County 911 Center Board of Directors. He also helps out with the Boy Scout Explorer Post. Eiswerth was involved with Air Force ROTC and Phi Kappa Phi fraternity and received his BS in Forestry.

A colleague says of Eiswerth, “He is completely loyal to Michigan Tech, Air Force ROTC, and the Air Force, as well as his friendships.”

Mission Statement
The mission of the Michigan Tech Alumni Association is to provide a mutually beneficial link between Michigan Tech alumni and a) the University, b) other alumni, and c) Michigan Tech students (future alumni).

Vision
To possess an environment and spirit in the Michigan Tech Alumni Association that results in a significant number of alumni forming lifelong relationships with the University and other alumni.

Board of Directors
Executive
President
Mark C. D. Mitchell, MD ’77
Past President
Romuald J. Laponte ’92 (Rom)
Vice President
Paul Ninefeldt ’96
Treasurer
Jacque Smith ’85
Secretary
Lisa Fernstrum ’91

Directors
Daniel F. Batten ’88, ’90
Edwin F. Eiswerth ’77
Lisa A. Fernstrum ’91
Mark A. Garver ’06
Kevin T. Graebel ’89
David Heiden-MITSF
Sally F. Heidtke ’81
Linda D. Kennedy ’91
Tanya J. Klain ’90
Alexis J. Lee ’05 (AJ)
Ryan D. Menze-MITSF
Lori Ann Muhlig ’01
Paul J. Ninefeldt ’96
Paul G. Nygaard ’93
Johnny G. Peavey ’74
Derhan D. Sanders ’87
J. C. Smith ’85
Richard G. Timmons ’69
Karin J. Van Dyke ’78
Brenda Rudiger-Alumni Relations

If you have a question or suggestion, please contact the Alumni Relations Office at 877-688-2586 or email alumni@mtu.edu.

Alumni Reunion 2008

Food, fun, friends, football, and more food. Alumni reconnected and savored the campus and the Keweenaw (including the Sturgeon River via canoe) over four days of near-perfect weather. See you next year, August 6–8, 2009.
Benjamin J. Hall ’05
Outstanding Young Alumni Award
(Presented Posthumously)

Benjamin Hall graduated with a bachelor’s degree in social sciences. He served as the cadre battalion commander in the Tech Army ROTC program and was commissioned a second lieutenant in the US Army. A paratrooper and an army ranger, Hall was deployed to Afghanistan with 503rd Parachute Infantry Regiment, 173rd Airborne Brigade. Hall was killed in action on July 31, 2007. He was posthumously awarded the Bronze Star for heroism and the Purple Heart.

Born in Texas, the son of army colonel and Tech alumnus John Hall ’75, Hall moved around a lot as a child but throughout his life remained fixated on achievement. At Tech, he majored in social science and earned many awards in the ROTC program. He earned the rating of Distinguished Military Graduate, and ranked among the top cadets across the nation when he graduated. He continued to excel while on active duty. He earned the Army’s Combat Infantry Badge and Expert Infantry Badge; was one of only twenty-two soldiers in the 173rd Airborne Brigade to be awarded the title of True Blue; and was instrumental in creating a new infantry company, called Destined, in his regiment.

His family remembers him as “giving and humble—the type of guy people were drawn to.” Hall is survived by his parents, two sisters, and a brother, and is buried in Arlington National Cemetery.

Jason M. Cousineau ’98
Outstanding Young Alumni Award

Jason Cousineau earned a bachelor’s degree in mechanical engineering and has engineered a distinguished career.

He has worked at Engineered Machined Products, Inc. of Escanaba since graduating, is a senior product development engineer, and is the technology lead on several projects. EMP is a leader in the design, manufacture, and assembly of advanced thermal and oil management components and systems. Cousineau holds several patents, including two for an advanced filtration system that continuously filters engine oil and automatically ejects used filter media.

Cousineau has been published by the Society of Automotive Engineers and was honored by Design News Magazine for his contributions to global engineering. He also earned a bachelor’s degree in engineering management at Lake Superior State University.

For Tech, Cousineau has participated in several Senior Design projects as well as a graduate research advisor for the mechanical engineering department.

Dawn M. (Zarling) Plitzuweit ’95
Outstanding Young Alumni Award

Dawn Plitzuweit, who has excelled in women’s electrical engineering, graduated with a bachelor’s degree in the field.

She was recently named dean of Mississippi State University’s Bagley College of Engineering. Prior to this, Rajala headed the Department of Electrical and Computer Engineering at MSU. She earned both master’s and doctoral degrees from Rice University, taught at North Carolina State University and Purdue University, and served as an adjunct research faculty member at the Wake Forest University Bowman Gray School of Medicine.

Rajala joined the faculty at NC State in 1979, where she was the first female professor in the Department of Electrical and Computer Engineering. She is a member of the Society of Women Engineers; a fellow of the Institute of Electrical and Electronic Engineers; a fellow of the American Society for Engineering Education. A native of Skandia, Michigan, she was only the third woman—and the only one in her class—to graduate from Michigan Tech with an electrical engineering degree. She was a member of the Tech Tennis Advisory Council. She joined the faculty at NC State in 1979, where she was the first female professor in the Department of Electrical and Computer Engineering.

For Tech, Cousineau has participated in several Senior Design projects as well as a graduate research advisor for the mechanical engineering department.

Dawn M. Zarling
Outstanding Young Alumni Award

Dawn Plitzuweit, who has excelled in women’s basketball as both player and coach, earned a bachelor’s degree in biological sciences.

While playing for Tech (1990–95), she was named twice an All-America, twice an All-America Honorable Mention, and twice an All-Academic player. As a player, Plitzuweit led her team to three titles in the GLIAC and four appearances in the NCAA Division II tournament. She holds career records at Tech for rebounds, assists, and steals. She also received academic honors, and, at the invitation of the president, was the speaker at her own commencement. That same year, she was named the NCAA Woman of the Year in Michigan. She is the first person to be honored by the Modern Women’s Division II Bulletin as both an All-America Player (1995) and Coach of the Year (2006).

As well, she has been named Coach of the Year in the conference, the state, and the nation. Plitzuweit has been an assistant coach for Tech, the University of Wisconsin-Madison, and the University of Wisconsin-Green Bay. She was the head coach at Grand Valley State University for four years and won the NCAA Division II national championship in 2005–06. She has been associate head coach at the University of Michigan since 2007. She is a member of the Michigan Tech Sports Hall of Fame and the Varsity Club.

Sarah A. Rajala ’74
Distinguished Alumni Award

Sarah Rajala, who has pioneered the way for women in electrical engineering, graduated with a bachelor’s degree in the field.

She was recently named dean of Mississippi State University’s Bagley College of Engineering. Prior to this, Rajala headed the Department of Electrical and Computer Engineering at MSU. She earned both master’s and doctoral degrees from Rice University, taught at North Carolina State University and Purdue University, and served as an adjunct research faculty member at the Wake Forest University Bowman Gray School of Medicine.

Rajala joined the faculty at NC State in 1979, where she was the first female professor in the Department of Electrical and Computer Engineering. She is a member of the Society of Women Engineers; a fellow of the Institute of Electrical and Electronic Engineers; a fellow of the American Society for Engineering Education. A native of Skandia, Michigan, she was only the third woman—and the only one in her class—to graduate from Michigan Tech with an electrical engineering degree. She was a member of the Tech Tennis Advisory Council. She joined the faculty at NC State in 1979, where she was the first female professor in the Department of Electrical and Computer Engineering.

Sarah Rajala, who has pioneered the way for women in electrical engineering, graduated with a bachelor’s degree in the field.

She was recently named dean of Mississippi State University’s Bagley College of Engineering. Prior to this, Rajala headed the Department of Electrical and Computer Engineering at MSU. She earned both master’s and doctoral degrees from Rice University, taught at North Carolina State University and Purdue University, and served as an adjunct research faculty member at the Wake Forest University Bowman Gray School of Medicine.

Rajala joined the faculty at NC State in 1979, where she was the first female professor in the Department of Electrical and Computer Engineering. She is a member of the Society of Women Engineers; a fellow of the Institute of Electrical and Electronic Engineers; and president and fellow of the American Society for Engineering Education. A native of Skandia, Michigan, she was only the third woman—and the only one in her class—to graduate from Michigan Tech with an electrical engineering degree. She was a member of the Tech Tennis Advisory Council. She joined the faculty at NC State in 1979, where she was the first female professor in the Department of Electrical and Computer Engineering.

Terry Smythe
Honorary Alumni Award

Terry Smythe is a long-standing friend of Michigan Tech. She is the founder and volunteer coach of the Michigan Tech Women’s Rowing Club, which began in 1995 with shells donated by Jim Dreher ’62. Smythe is an accomplished rower in her own right, attending two Olympic Trials and competing all over the world. In 2006, she brought home five gold medals from the Masters World Rowing Championships.

She has been chair of the Presidential Advisory Council for Women’s Athletics at Michigan Tech, which mentors Tech women and brings speakers and presentations to campus. Smythe was instrumental in developing the Tech employee wellness program, which today is known as TechFit. She was also a member of the Tech Tennis Advisory Council.

Smythe serves as fitness director for Keweenaw Memorial Medical Center and has collaborated on several Senior Design projects with the biomedical engineering department and has led many Summer Youth explorations. She teaches spinning and indoor rowing classes at Tech and is often on campus as a motivational speaker and presenter.

Smythe has received numerous awards locally and nationally for her work promoting fitness and rowing in the community, including sitting on the Michigan Governor’s Council on Physical Fitness, Health, and Sports. There is no end to Smythe’s influence and enthusiasm. One admirer sums it up by saying, “When the bull comes at her, Terry grabs the horns.”
Heneses Share Their Good Fortune

Richard Henes says his greatest fortune is his wife, Elizabeth, but he’s also had a successful career and become a philanthropist. He is gratified to help others. “What else is there to do with money once you have it?” he asks. “There’s no sensible alternative.”

Henes’s road to success began at Michigan Tech, where he majored in mechanical engineering—a discipline that was a good fit because, as a youth, “I fixed everything there was to be fixed,” he recalls.

A native of Menominee, Michigan, he graduated with a bachelor’s degree in 1948. After earning a law degree from the University of Michigan, he worked as a patent lawyer in Milwaukee for a year and then moved to Phoenix, where he worked as an engineer.

In 1958, he founded Henes Manufacturing Company, then Henes Products and Henes Stamping. His products ranged from electronic instruments to semiconductor parts to aircraft parts. One major development was a water-fueled gas welder. His patented products also included exercise equipment, a gas generator, a pressure-operated valve, and a cover for pickup truck beds. “We had success, but nothing earthshaking,” he says.

“Often, you search around the country for the best person to fill an endowed chair,” Predebon says. “We already had the best in our department, for which I am very grateful. John is a special person.”

For his part, Sutherland is personally gratified to fill the Henes chair. “It’s one of the highlights of my professional career,” he says.

He also recognizes the value for the institution. “This is exactly the type of support we need to continue our tradition of excellence at Michigan Tech. The chair supports students and helps promote our activities across the US and abroad. The Henes’s commitment helps us to stay at the forefront of sustainable manufacturing research and to continue to build our reputation in this area.”

Predebon says that Sutherland is renowned in the field of environmentally responsible manufacturing. He has conducted research at a high level, attracted significant research funds, collaborated with other faculty, and mentored many graduate students.

Sutherland was being courted by others offering him an endowed chair, a common way in academe to attract established faculty and those “on the rise.” The Henes chair induced Sutherland to remain at Tech. “The timing was just right,” Predebon says.

Sutherland is the director of Tech’s Sustainable Futures Institute, excelling at interdisciplinary inquiry in addition to collaboration with other universities.

“Of the endowed chair, Henes says matter-of-factly, “It’s one of the highlights of my professional career,” he says.

The Heneses have endowed a chair and a scholarship. They also provide annual support of an endowed chair and endowed scholarship. They also have provided additional faculty positions, as well as the Seaman Mineral Museum, through their estate.

Predebon says that Sutherland is renowned in the field of environmentally responsible manufacturing. He has conducted research at a high level, attracted significant research funds, collaborated with other faculty, and mentored many graduate students.

Sutherland was being courted by others offering him an endowed chair, a common way in academe to attract established faculty and those “on the rise.” The Henes chair induced Sutherland to remain at Tech. “The timing was just right,” Predebon says.

Sutherland is the director of Tech’s Sustainable Futures Institute, excelling at interdisciplinary inquiry in addition to collaboration with other universities.

“Often, you search around the country for the best person to fill an endowed chair,” Predebon says. “We already had the best in our department, for which I am very grateful. John is a special person.”

For his part, Sutherland is personally gratified to fill the Henes chair. “It’s one of the highlights of my professional career,” he says.

He also recognizes the value for the institution. “This is exactly the type of support we need to continue our tradition of excellence at Michigan Tech. The chair supports students and helps promote our activities across the US and abroad. The Henes’s commitment helps us to stay at the forefront of sustainable manufacturing research and to continue to build our reputation in this area.”

R
Presidential Council of Alumnae Update

PCA members are recognized for achievements such as educational excellence, professional accomplishments, past student service, current community services, University support, and other personal success. The PCA advises the President on campus climate issues and provides suggestions and support to enhance the University's environment for students, especially women. Current students are also identified as Women of Promise (bottom right).

2008 Inductees

Cathy J. (Johnson) Colman '80 Computer Science
IT Director, Quality, Process and Support Solution Center, 3M, St. Paul

Nancy M. (Maloney) Grimm ’95 Rhetoric and Technical Communication Director of the Writing Center, Michigan Tech

Lou Anne (Szewczyk) Koerschner ’81 Chemical Engineering Sales and Marketing Director, 3M, St. Paul

Dianne M. March ’86/’92 Computer Science Co-founder/Software Consultant, SRT Solutions, Ann Arbor

Linda J. (Neal) McInally ’79 Chemical Engineering
Supply Chain Executive Director, Specialty Chemicals Business, Dow Chemical, Midland

Amy L. (Grisdale) Trahey ’94 Civil Engineering CEO/Owner, Great Lakes Engineering Group, Lansing (pictured, top right, with President Glenn Mroz)

For more about the PCA, visit www.pca.mtu.edu.

Class Notes

Janet Murgittroyd ’63 retired to travel, gardening, kayaking, sailing, and bridge. She would love to hear from fellow “toots.” (And you can do that through HuskyLink www.huskylink.mtu.edu.)

Online Alumni Community Enhanced

More than 10,000 alumni and friends have reconnected via HuskyLink, Michigan Tech’s online community, since its launch in early 2007.

HuskyLink members can reconnect through the exclusive Michigan Tech alumni directory that allows users to find former classmates or fellow alumni who live in their area.

The customized My Profile section, Friends List, and Blogs provide new ways for alumni to communicate with each other. Class Notes allow members to post announcements and stories which could also be published in this Michigan Tech Magazine. Special Clubs and Groups pages allow members to enhance their HuskyLink experience by connecting alumni with common campus experiences, and you can also subscribe to the TechAlum newsletter.

Get connected today! http://www.huskylink.mtu.edu/join

Alum Publishes Textbook

Eustace L. Dereniak ’63 has published Geometrical and Trigonometric Optics with Teresa D. Dereniak. From Cambridge Press: “An ideal textbook for advanced undergraduate level courses in geometrical optics, this book will also interest those wanting to learn the concepts and theory of geometrical optics. Each chapter contains worked examples, and there are exercises to reinforce the reader’s understanding of material.” Eustace is currently a professor at the University of Arizona.
Phillip Holmblyde ’71 recently retired from the architectural and engineering company of SSOE, Inc., Troy, MI, after 29 years, most recently as senior vice president/co-owner in the retail division serving as a principal project manager. Phillip is currently enjoying not having to drive to Troy every day and looking forward to playing more golf. He hopes to be able to become more active in supporting the youth of his area to seek engineering as a career. Aubrey Freeman ’72 has accepted a position as an adjunct instructor at Kaplan University. He is teaching an online class in effective writing and a class in technical writing. Aubrey is still with Unisys in the Twin Cities as a technical writer.

Michigan Tech Love Story

Robert VanDuy ’81 writes—

“I got a postcard from Tech asking us to share our Valentine story. I, a comp. sci. major, felt I might be able to “help” this young lady out. Jan and I met in Bentley Beale’s COBOL class in the EE building in the large lecture hall on the left. I assume its still there. Jan was sitting halfway down on the right, one seat from the aisle. She was wearing a white shirt, blue jeans, and blue knit sweater. She had a yellow notebook and on the cover was written ‘Computer’. As a comp. sci. major, I felt I might be able to “help” this young lady out. Eventually we got engaged and were married in August of our senior year. We both graduated in 1980. In the end, I think she has spent more time helping me out, or perhaps she would put it slightly differently. But we have had twenty-seven great years together, and two wonderful sons and a foster son as well. Hopefully we can make it up to Tech one of these days.”

Christopher Gillanders ’90 announces Grace (3) and Elizabeth (5) in fall 2007.

Philip Van Riper ’90 started work at Goodyear Tire and Rubber in Akron as a senior development engineer in the engineering mechanics group performing PEA on tires. Wendy Peffers ’92 announces Taryn Elizabeth Peffers, born 4/21/05, and Layne Quin Peffers, born 6/11/07.

Karen (Mikkola) Swager PE ’92 has been promoted to director, operations strategy, for Mosaic Fertilizer and is located in Mulberry, FL.

Andrew Tabar ’95 was hired at Qualcomm in San Diego as a senior systems engineer in the IT department supporting the monitoring tools.

Jim ’94 and Kimberly Allison announce their fifth son, Daniel John, on 11/8/07 in Wichita, KS. Daniel is happy and healthy.

Shelley (Williams) Bolbrugge ’94, Ashleigh Bolbrugge, and Harry announce the latest addition to their family, Maddigan Lottie, on 9/28/07.

Pippin ’94 and Janice Brehler announce the birth of Liuetze Eleanor on 2/8/08.

Jeanette (Foley) Albright ’95, Alon Albright, and big brother, Ethan, welcomed Grace Denise on 3/8/08.

Deb Zwitter ’92 has recently begun her new career at LSI Corp. in Fort Collins, CO, where she continues to work in the field of signal integrity for high-speed interfaces.

Michael Erickson ’96 and Stephanie (Stodolak) Erickson welcomed their first child, Colton Michael, on 11/19/07.

James Foster ’96 announces the birth of Peter Frederick Foster on 5/5/08.

Brian Van Ghee ’96 announces the birth of Daniel John Van Ghee on 3/25/08. Brian has recently taken a position with Midwest ISO as a senior operations engineer.

Kristi (French) Zakrzewski, PE ’96 and Brian Zakrzewski ’99 announce the birth of Anja Michelle and Eli Ryan on 12/6/07. Kristi has also accepted a new position as an associate engineer at CH2M HILL in Okemos, MI.

Kevin Britton ’97 received a Master of Science in Engineering from Purdue University in May 2008.

Tonya (Treisch) Albers ’98 announces the birth of Nora Catherine in September 2006.

Laura Hoeftlein ’98 and Michael Hoeftlein announce the birth of Cecilia Therese on 1/9/07.

Heather Barta ’99 and Rick Barta have relocated to Mesa, AZ. Heather is a senior vendor management specialist for Kelly Services at Intel in Chandler, and Rick is a program manager for TRW Automotive in Mesa.

Jason Groenendyk ’99 and Stephanie Groenendyk announce the birth of Carey Sanford on 9/27/07 and Christian Matthew on 1/18/05 in Phoenix, AZ.

James ’99 and Sarah Truax ’00 announce the birth of Wyatt John Donald Truax in Brockton, MA. His middle names are in honor of James’ dad and an uncle (both Michigan Tech graduates).

James’ dad and an uncle (both Michigan Tech graduates). The flight director is responsible for managing and carrying out shuttle flights and space station expeditions. Flight directors also are involved in developing plans for Constellation Program exploration missions. Only seventy-seven people have served as NASA flight directors, or are in training to do so, in the nearly fifty years of human spaceflight.
Postcard from Iraq
Alum Oversees Reconstruction, Helps Girls’ School
1st Lt. Jennifer Alecci ’00 is stationed in Taji, north of Baghdad, Iraq, and was supervisor of forty-eight construction projects totaling more than $122 million. She helped turn “rubble and dilapidated buildings into usable facilities.”

She also helped the Taji Girls’ School with donations of soccer balls, school supplies, and, through a Middle Eastern friend, to introduce herself. After visiting one “extremely reserved” classroom, she left, but looked back in and “caught the girls smiling, talking, and enjoying the supplies we gave them. I smiled and waved, and they did the same. It’s something I’ll never forget.”

Tony and Megan (Schaller) Moraska ’04 celebrated their marriage 6/9/07 in Milwaukee with family. Last October, Tony’s career took them to Coeur d’Alene, ID. Tony, an environmental engineer, is currently a regional sales manager for Blue Water Technologies, which provides water filtration systems to wastewater treatment plants in the US and Canada. Megan, a biomedically trained engineer, started her own company, Moraska Consulting Group, Inc. She provides project management expertise to large health care organizations around the country. Tony, Megan, and their black lab puppy, Miller, enjoyed their first summer in the great Northwest.

Zachary ‘99 and Elizabeth (Tiefer) Owens ’00 announce the birth of their first child, Sawyer Westbrook, on 3/28/08.

Jim Klein ’01 and Angie (Glanellen) Klein ’01 announce the birth of Caleb Ryan Klein on 3/28/08.

Michigan Manarola ’01 and Kevin Ford ’00 announce their engagement and plan to marry in June 2009 in northern Michigan. Both are currently living in Middletown, CT.

Daniel Siderius ’01 completed a PhD in Chemical Engineering in 2007 and joined Wanshan University in St. Louis as a postdoctoral research associate. He resides in St. Louis County, MO.

Andrea (Dreyer) Zuehlk ’02 married Matt Zuehlk on 6/17/06 in Bloomfield Hills, MI.

Aron Griffin ’02 married Jennifer DeMull in Grand Rapids, MI, on 11/17/07.

Amanda McMahon ’02 and Ravi Pantakar announce the birth of Viveka Donali Pantakar on 2/23/08.

Jacey Radel ’02 announces the birth of Caiden Alan on 2/23/08.

Anelia Scafani-Murphy ’02 is an intelligence support officer/assistant Hertfordshire Police Authority, Three Rivers, UK, and is married to Gary Murphy, clinical scientist, Health Protection Agency Center for Infection, virus reference division.

Emily Miller ’03 is a senior mechanical engineer at Cardinal Health and lives in San Diego.

Jennifer Muraske ’03 has a new job as accountant for the town of Snowmass Village, CO.

Emily Coles ’04 announces the birth of Carson Gunther Coles on 4/3/08.

The Fine Print
Michigan Tech Magazine (ISSN 0355-7068) Published by Michigan Technological University 1400 Townsend Drive Houghton, MI 49931-1295 Postage is paid at Houghton, Michigan, and additional mailing offices.

In Memoriam
The Michigan Tech family extends condolences to the relatives and friends of those who have passed away recently.

1954
Jerald B. Van Faassen PE
1936
Roger Counat
1937
Emil T. Macki Dr. F. John McMulkin Paul N. Sehback
1939
Robert P. Klenner Sr.
1940
Dr. Donald R. Doulin
1941
Arthur J. Klenner
1942
Albert L. Horujko
1943
Ellenora D. (Bryus) Taylor
1944
Harold W. Fitzner Roger J. Stooves
1945
George E. Baldwin Jr.
1947
Adrian J. DeVriend George A. Kaiponen Roy P. Talman
1948
1949
Glenen P. Barr Thomas M. Harrison Bert C. Prisk
1950
Theodore R. Edwards Robert J. Ramata
1951
Lawrence J. Sundlie
1952
Richard C. Ahlberg James F. Lahr
1953
Melvin L. Anderson Douglas L. Fides
1954
Jay B. Coon Robert J. Wellington PE
1955
Robert J. LaLuzerne
1956
David S. Coyle Emerg. J. Wiedenhoefer PE
1957
James E. Smart
1958
William C. Aldrich Robert W. Ehrlich Jr. Fred A. Riseth
1959
William C. Prues John G. Veeneman
1960
Edwin A. Goudette Gary H. Keppen
1961
Edward P. Krueger Bruce A. Marshall
1964
Richard I. Grass Richard S. Jones
1965
Dr. David S. Canavera
1966
Konstantine P. Fedyko Raymond M. Humphrey
1967
Nareshchandra N. Mody
1968
Lance R. Rustill
1969
Alan J. Kent Dr. Ben A. Moller
1970
Robert J. Kowal
1970
Michael Osterby
1971
James C. Mallory
1972
William C. Carver Kristine I. (Federgleich) Johnson
1973
Cheryl A. Barber Rockablitz
1977
Richard S. VandeVusse
1980
Thomas C. Meier Frank C. Murthland III
1982
Wilhelmina H. Yonkman
1983
Charles G. Herend
1986
Cynthia J. (Little) Bellefeuille
1988
Martin R. Albar Dennis Corbett
1990
Loralee O. (Ollanketo) Larson
1995
Severi R. Haataja
1999
Jacob B. Himes
2000
Troy D. Mikula
2002
Jeffrey A. Call
2008
Brian L. Beachy

Address Changes
Email: gccolaro@mtu.edu
Mail: Alumni Records Office
Michigan Technological University 1400 Townsend Drive Houghton, MI 49931-1295

Michigan Technological University is an equal opportunity/educational institution/equal opportunity employer.
My Father’s Hands

By Randall Freisinger, Professor of Humanities and 2008 Distinguished Teaching Award Winner

My father’s hands, both of them, lacked fingertips and nails. The fingers were elliptic, pink, and smooth, no telltale prints for him to leave as clues at crime scenes for prying forensic eyes. I used to lie awake nights and try to imagine the moment: his hands, masculine and whole, holding the dynamite caps out an open window to show his friends below. Those hands, about to explode and leave him exposed mimosa-like to the world, unable to learn the simplest alphabet of touch, unable to play a game of catch with his sons. Is that why he turned to tools, the feel of cold, hard, unreciprocating steel, the pliant, undemanding attitude of wood? How often I tracked him down to his basement shop and saw his tapered stumps bleeding, his eyes fierce slits through squall clouds of cigarette smoke, his lathe raving like a crazed evangelist coercing miracles from crippled and knotted planks of pine. When the stroke routed language from his brain, we could always find him on trips to Wal-Mart pacing the aisles in Tools, his pared fingers in silent conversation with sets of chisels and drill bits and clamps. In his casket, no longer able to hide with sleights of hand his scarred fingers now dovetailed together, he smiled. That smile, wired and screwed into place, bore the slightest trace of pride. As if, like Noah, he rode the rising waters of his death in a fine ark of his own making, all gopher wood and sealed with the pitch of darkness.

First published in New Letters: A Magazine of Writing & Art (Vol. 73, No. 4, 2007)